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We establish a correspondence between the recently proposed P(4) anne and 
the standard superhamiltonian descriptions of the electrodynamics of classical 
charged particles. The P(4) theory uses a generalized anne connection on the 
anne frame bundle A(M)  over spacetime, and an affine connection is induced 
on phase space thought of as the vector bundle T*M. On the phase space 
manifold T*M this affine structure defines a covariant canonical symplectic 
form, which, when coupled with the canonical free-particle superhamiltonian, 
reproduces the Lorentz force law for classical charged particles. Conversely, one 
may "split" the noncanonical symplectic form on T*M to define an affine 
connection on A(M) and thus return to the P(4) theory from symplectic 
geometry. The correspondence also allows a geometrization of superhamiltonian 
dynamics. Roughly speaking, the symplectic form on T*M is geometrized as 
an R4-aNne connection on A(M),  and the superhamiltonian is geometrized as 
an anne difference function on the local momentum-energy tangent attine spaces. 

1. I N T R O D U C T I O N  

The unified theory of gravitat ion and  e lect romagnet ism suggested 
recently (Norris ,  1985) is a geometric unified theory based on the Poincar6 
group P(4) = O(1, 3) | R 4. Its distinctive and  most  impor tan t  features are 

that: (1) it uses a geometry with a general ized affine connec t ion  on  an affine 
frame b u n d l e  as under ly ing  geometric structure, and  (2) it interprets the 

truly affine part  of  geometry as f reedom in the choice of the origin in the 

local m o m e n t u m - e n e r g y  spaces. The "na tu ra l "  choice of an origin field 
allows one to reproduce the E ins t e in -Maxwel l  equat ions  in the P(4)  theory 

as geometric equat ions  stated in terms of the P(4)  curvature tensor. Physi- 
cally, the na tura l  choice of the origin field is related to the use of instan-  
taneous ly  comoving observers in describing the mot ion  of charged test 
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particles. In the P(4) theory the trajectory of a particle with mass rn and 
affine charge e is identified with an affine geodesic of type e, and when 
m ~ 0 this equation is the Lorentz force law for a particle with charge-to-mass 
ratio e. 

The fundamental geometrical idea in the P(4) theory is to model the 
momentum-energy of classical charged particles as affine vectors. Intui- 
tively, an affine vector is a vector known only up to a translation, but the 
"differences" between affine vectors are (unqualified) vectors. Since the 
canonical momentum-energy of a classical charged particle translates under 
electromagnetic gauge transformations, it is clear that the affine vector model 
could apply to the canonical momentum-energy; however, it does not apply 
to the kinetic momentum-energy,  m d3,/ds, which is a well-defined linear 
vector field along the world line of a particle. It is therefore natural to 
inquire into the relationship of affine geometry to the symplectic geometry 
of Hamiltonian dynamics where the canonical momentum-energy plays 
such a fundamental role. It is our purpose here to clarify this relationship. 

In this paper we expand the physical and mathematical foundations 
of the P(4) theory and relate the affine geometric structure of the theory 
to the symplectic geometry of Hamiltonian dynamics. Our main result is 
that we establish a correspondence between these two descriptions of the 
electrodynamics of classical charged particles. The P(4) theory uses an 
affine connection on the affine frame bundle A(M) over spacetime, and an 
affine connection is induced on phase space thought of as the cotangent 
bundle T*M. On the phase space manifold T*M this affine structure defines 
a covariant canonical symplectic form which, when coupled with the canoni- 
cal free-particle superhamiltonian, reproduces the Lorentz force law for 
classical charged particles. Conversely, one may "split" the noncanonical 
symplectic form on T*M to define an affine connection on A(M) and thus 
return to the P(4) theory from symplectic geometry. The correspondence 
also allows a geometrization of superhamiltonian dynamics. Roughly speak- 
ing, the symplectic form on T*M is geometrized as an R4-affine connection 
on A(M), and the superhamiltonian is geometrized as an affine difference 
function. 

We begin in Section 2 with a brief survey of those ideas from differential 
affine geometry needed for our discussion. In Section 3 we set up an affine 
vector model of momentum~energy using the standard observational 
description of classical charged particles in electromagnetic fields. Instan- 
taneously comoving observers are used to define a fundamental affine vector 
field 0 on spacetime; we refer to this field as the charged classical vacuum 
because it represents the state of zero kinetic momentum-energy of classical 
charged particles relative to uncharged particles. The observational descrip- 
tion also provides the differential affine transport law for the charged 
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vacuum, and we identify the Maxwell field tensor with the R4-translational 
connection relative to 0. We define affine geodesics with respect to such an 
electromagnetic affine connection and thereby recover the Lorentz force 
law. R4-curvature and integrability conditions are introduced, and we show 
that integrable electromagnetic affine connections correspond to covariant 
constant electromagnetic fields on fiat spacetime. 

In order to establish a relationship between affine momentum-energy 
as defined in Section 3 with canonical momentum-energy,  we turn in Section 
4 to the symplectic geometry of Hamiltonian mechanics. We consider two 
alternative ways of including the electromagnetic interaction in superhamil- 
tonian dynamics. Starting from the free-particle system (free-particle super- 
hamiltonian and canonical symplectic form), one can modify either the 
superhamiltonian or the symplectic form to introduce the electromagnetic 
interaction. The resulting formulations in fact represent the same physical 
system, but expressed with respect to different phase space coordinates. 
The transformation between the systems is the well-known substitution rule 
(x ~, ~ ) ~  (x ~, rr,,-eA~,), which is an affine translation of momentum- 
energy. This establishes a n  R 4 affine translational symmetry for the super- 
hamiltonian dynamical description of classical charged particles in electro- 
magnetic fields. 

In Sections 5 and 6 we establish the correspondence between the P(4) 
and superhamiltonian descriptions. We rewrite the dynamical Hamiltonian 
equation of  motion in Section 5 as a "semihamiltonian" equation, and make 
the assumption that the spacetime geometrical model of canonical momen- 
tum-energy is the affine vector model. In order to tie down a correspondence 
with the P(4) theory, we need to relate a choice of coordinates on T*M 
to a choice of "origin" of an affine frame field on M. We show that the 
identification of the charged vacuum 0 with coordinates in which the 
superhamiltonian is the free particle superhamiltonian reduces the semi- 
hamiltonian equation of motion to the affine geodesic equation. 

In Section 6 we complete the affine reinterpretation of superhamiltonian 
dynamics. By studying the change in form of the Hamilton equations for 
free uncharged particles under a redefinition of the reference momentum- 
energy, modeled geometrically as momentum-energy translations, we iden- 
tify an additive integrable part of the electromagnetic R 4 affine connection 
measured relative to the field 0. We show that the noncanonical symplectic 
form on T*M can be rewritten in a covariant canonical form, and that this 
2-form can be split to obtain the vector bundle definition of an affine 
connection. This leads us back to the P(4) theory. 

We then show that Hamilton's canonical equations can be replaced by 
a pair of affine-geometric equations. The Hamilton equation that defines 
the 4-velocity of a particle is replaced by a geometric definition in terms of 
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the affine difference function. The dynamical Hamiltonian equation is then 
replaced by the aifine geodesic equation. Section 7 contains a discussion 
of our results and concluding remarks. The general correspondence between 
the P(4) and superhamiltonian formulations is displayed in Table II in 
Section 7. 

2. AFFINE GEOMETRY 

In the sections that follow we describe the P(4) picture of the local 
momentum-energy spaces l~pM as 4-dimensional affine spaces, and in order 
to have a standard notation, we present the following brief survey of affine 
geometry. 

Formally (Dodson and Poston, 1977) an affine space is a triple (S, V, ~), 
where S is a set whose elements are called points, or affine vectors, V is an 
n-dimensional linear vector space, and ~ : S x S -~ V is the difference function, 
with the following properties: 

(i) 6(x , y )+6(y , z )=6(x , z )  Vx, y , z ~ S .  
(ii) for each x c S, the map 6x : S ~ V defined by 

~ ( y )  := 6(y, x) (1) 

is a bijection. 

It is often convenient to be less precise and refer to the set S as the 
affine space. 

The fundamental geometrical operation in an affine space is the 
operation of taking the difference between points using 6, and this difference 
is represented by a vector. A well-known example is Minkowski spacetime 
Mo together with the atlas of all P(4)-related Lorentz charts (Mo, x~). In 
Minkowski spacetime all tangent spaces coincide. Then, for any fixed point 
poe Mo, (Mo, TpoMo, 6o) is an affine space with difference function 

6o(p, q) = [xU(p) -x~(q)]r~ (2) 

Here (r~) denotes the standard basis of R 4, This affine structure considers 
the fundamental points as the events of flat spacetime. On the other hand, 
in the P(4) theory the fundamental points are considered to be the momen- 
tum-energies of particles. 

Property (i) is the statement that the differences between points in an 
affine space obey a triangle equality. It implies, in particular, that 6(x, x) = 0 
for all x ~ S. That is, the difference between a "point  and itself" is zero (the 
zero vector!). Property (ii) states that the affine space S can be made 
isomorphic to its vector space V simply by choosing any point, say x, to 
identify with the zero vector in V, since 6x(x) = 6(x, x) = O. 
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An affine frame for (S, V, 6) is a pair (e~,, x), where (eu) is a linear 
frame in V and x is a point in S, the origin of the affine frame. The 
"coordinates"  of  a point y ~  S relative to an affine frame (e, ,  x) can be 
split into two parts: 

(i) Xy := cSx(y)= the radius vector of  y relative to the origin x. 
(ii) (Xy)U := eU(Xy) = the linear components of y relative to the affine 

frame. 

Here (e ~) denotes the coframe dual to (e~,). Note that "radius"  vector 
can be defined relative to a n y  fixed point in S without having to specify a 
complete affine frame. 

The affine group A(4) = G/(4) | R 4 acts on affine frames in the following 
way. For a = (a~) ~ GI(4) and rt = (7/u) ~ R 4 the A(4) element (a, ~7) trans- 
forms the affine frame (e~, x) into the affine frame (eu, 2) = (e~a~, x+ "q~e~). 
The linear frame thus undergoes a GI(4) linear transformation, while the 
origin of  the frame undergoes a translation. When the linear frames under 
consideration are or thonormal  frames relative to a spacetime metric, then 
the Poincar6 subgroup P(4) c A(4) is the appropriate  transformation group. 
In this paper  we are mainly concerned with the component  of  the P(4) 
connection that models the electromagnetic field, namely the R 4 component.  
For electrodynamics in flat spacetime the P(4) theory should be thought 
of  as a n  R 4 theory. 

The simplest possible affine space is obtained by giving an n- 
dimensional vector space its natural affine structure. This means to consider 
the triple (V, V, ~o), where s = V as sets, and the difference function 60 is 
subtraction as defined in V. This simple example means that intuitively we 
may think of an affine space as a vector space in which the zero vector is 
put on equal footing with all other vectors in the space. We denote by A 4 

the affine space obtained by giving R 4 its natural affine structure. 
The affine structure assumed in the P(4) theory is (IIpM, TpM, 6) at 

each spacetime point p c M, where I IpM denotes the space of momen tum-  
energies at p. The difference function 6 is the new geometrical object, and 
as we will see, it is fundamentally related to the superhamiltonian function 
on phase space. When necessary we will denote affine vectors in HeM as 
characters with "hats ."  Thus, if "kl and 7~" 2 a r e  momentum-energy  affine 
vectors in Ilpm, then their difference is a vector v defined by 

v := ~(~, ,  ~2) (3) 

I f  we keep in mind that affine vectors are not linear vectors, then a convenient 
shorthand notation for this difference is 

~'2 = ~'1Q v (4) 
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Given an al ine vector ~'1 and a linear vector v, one may define 7~ 2 by 
equation (4). It is important to note that in so doing the difference function 
has been used in an essential way. Specifically, ~'2 is determined as g~.l(v). 

We next extend these algebraic ideas from a spacetime event p to a 
4-dimensional spacetime region. An aff ineframefieldf  is a pair f =  (e~, ~'), 
where (e~) is a linear frame field and ~ is an origin (affine vector) field. A 
generalized affine connection to may be specified (Kobayashi and Nomizu, 
1963) by a pair to = ( F , / ( ) ,  where F is a linear connection a n d / (  is an R 4 
translational connection. The components (IF, ~K) of to relative to an affine 
frame field (e~, ~) can be defined by the exterior covariant derivative 
formulas (Cartan's structure equations) 

"* f v De~ = De~ = F~e~ (5) 

b~" =SK"e.  (6) 

f ~, In these equations F~, are the component 1-forms of a linear connection, 
and r is the R4-valued 1-form component of the translational part of 
the connection. The notation is t h a t / )  denotes exterior covariant differenti- 
ation with respect to to, while D denotes exterior covariant differentiation 
(for linear geometric objects) with respect to F. Equation (5) implies 
1)T = D T  for any linear tensor T. 

The transformation properties of F are well known and will not be 
discussed. We remark only that under a change of affine flame f ~ f '  the 
components of I'F depend on IF, but not on r 

Let us consider only affine frame transformations of  the type f =  
(e, ,  ~') ~ (e, ,  8). We may then use in place of equation (4) the more explicit 
notation 

/)~-= '~K (7) 

For f '  = (e~, c~) we also have the equation 

b ~  = ~  (8) 

Let t be the vector field such that -~- = ~(~ t. We assume 

/ ) (~@ t ) : = / ) ~ +  Dt (9) 

Equations (5)-(8) can now be used to show that 

'~K = ~  + Dt (10) 

This is the transformation law f o r / (  under change of origin field. 
The curvature tensor f~ of the affine connection o) = (F , / ( )  splits into 

a linear part Y~L and a translational part f i r ,  and ma), be defined by 
derivatives D e,~ = D e. and computing the second exterior covariant �9 �9 2 2 
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/~2~ = D(/9~') using (5) and (6). Assuming that the linear connection is 
torsion-free, one finds 

~ L  = d~,o +r~o ̂ ~o (11) 

i f~r  = d f K  + %  ^ i K  (12) 

Although the difference function is a basic feature in affine geometry, 
it does not correspond to a tensor field on spacetime and thus one has less 
intuition about its physical interpretation. After studying superhamiltonian 
dynamics we will be able to make some remarks concerning the interpreta- 
tion of 6 as a "generalized" superhamiltonian. For the most part we will 
operate formally with 6, assuming that it is smooth in some appropriate 
sense. We view equation (9) as a "compatibility" condition between the R 4 

connection and the difference function. Recalling equations (3) and (4), we 
can express the compatibility condition (9) as 

D(6(~-, ~)) = 6o(/9~-,/ga) (13) 

3. A F F I N E  M O M E N T U M - E N E R G Y  

Consider a classical charged particle moving along a trajectory y(s)  
in an electromagnetic field F =  F ~ e ~ |  ~ in fiat spacetime. Since such a 
particle obeys the Lorentz force law, the trajectory may be determined from 
initial conditions and knowledge of the Maxwell field tensor. Observa- 
tionally this means: "Actual world line compared to world line of fiducial 
test particle passing through same point with same 4-velocity" (Misner et 
al., 1973). That is, at each point along the trajectory introduce as a standard 
of reference an instantaneously comoving observer that is uncharged and 
freely falling. We are going to show that this pointwise definition, when 
"glued" together over a 4-dimensional spacetime region, leads to an affine 
structure for the local momentum-energy spaces, and that it also provides 
a differential transport law for the zero of momentum-energy of classical 
charged particles relative to uncharged particles. 

Consider a spacetime region U with electromagnetic field tensor F, 
and a collection of classical charged test particles on U. Since an instan- 
taneously comoving uncharged test particle cannot distinguish between 
charged test particles with the same charge-to-mass ratio, we introduce a 
parameter e = q /m ,  and write the Lorentz force law as 

d4// ds = eF(  ~ ) (14) 

i Along the trajectory of the particle the kinetic momentum-energy of the 
classical charged particle (per unit rest mass) satisfies 

u = 3~ (15a) 

d~u = eF(  ~,) (15b) 
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Here d~u denotes the directional derivative of u in the direction of -). As 
remarked earlier, the kinetic momentum-energy is a linear vector field along 
the trajectory. 

At each point y(s) the instantaneously comoving observer may be 
defined by 

Po = 3 ~ (16a) 

d~po=0 (16b) 

Equations (16a) and (16b) define an instantaneous comoving reference of 
momentum-energy (per unit rest mass) pointwise along the trajectory of 
the classical charged particle. Equation (16b) is the transport law for this 
comoving reference momentum-energy, defined at the moment only along 
one trajectory. 

At each spacetime event u and P0 agree, and we express this pointwise 
relationship as 

u = p o - 0  (17) 

We assume [cf. equation (24)] 

d~u = d~,po = d~O (18) 

Using equation (15b), we derive 

eF('i,) = d~ po - d~O (19) 

Temporarily (and incorrectly!) we rewrite this equation with the help of 
equation (16b) as 

d~O = - e f ( ~ , )  (20) 

We will make the necessary correction below. 
We imagine that the process is repeated for all possible classical charged 

particles passing through each event of y(s ) ,  and then extend the procedure 
to all points of U. Then equation (20) can be written as 

d,O = - e f ( t )  (21) 

valid for all timelike vectors t at each point of U. If we assume that equation 
(21) is true for all vectors at each spacetime event, then it may be generalized 
to 

dO = - e F  (22) 

This equation is now the differential transport law for the zero momen- 
tum-energy field for classical charged particles relative to instantaneously 
comoving uncharged test particles. 
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Equation (22) may appear rather puzzling. How can the derivative of 
zero not be zero ! The reason of course is that the object that we have written 
as 0 in the equation is not the zero vector field. Rather, it represents the 
state of zero momentum-energy for classical charged particles defined 
relative to instantaneously comoving uncharged particles, and identified 
with the zero vector at each spacetime event. It does not follow that it has 
the geometrical representation as the zero vector field. From equation (17) 
we see that once a specific charged particle is specified at a spacetime event, 
it is only the difference between P0 and 0 that is a linear vector field 3~(s) 
along the world line of the particle. We make the assumption that Po and 
0 are affine vectors/3o and 0, and that the geometrical meaning of equation 
(17) is 

-2 = ~(~o, 6) (23) 

L e t / )  denote an affine covariant derivative with linear part D. Applying 
formula (9) to equation (23), we obtain 

A A A A A ^ 

D~,~/-=- D~,6(po, O) = Ds, p o -  D~,O (24) 
A ^ 

We interpret the comoving condition to mean D~,po = 0, so that equation 
(24) reduces with the help of equation (15b) to 

D~,O = - D ~ =  - e F ( p )  (25) 

The affine interpretation of equation (22) is thus 

s = - e F  (26) 

According to equation (7), we can make the identification 

6K = - e F  (27) 

The Maxwell field tensor is proportional to the R 4 connection relative to 
the comoving momentum-energy affine vector field 0. Equation (27) is both 
geometrical and physical. It is the geometrical model of the observational 
fact that the instantaneous change in momentum-energy of charged particles 
in electromagnetic fields, measured relative to uncharged inertial observers, 
is described by the Lorentz force law. Geometrically, it models the Maxwell 
field tensor as the component of a n  R 4 affine connection relative to the 
affine field 8. 

In the procedure we followed above we started with the equation of 
motion for a classical charged particle and the defining properties of the 
comoving observer, and we inferred the existence of the affine vector field 
6. Now, although u and Po are only defined along curves, 8 is defined 
everywhere and is independent of the specific choice of particle. We there- 
fore consider 6 as a fundamental field defined on spacetime, and because 
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it represents the state of zero momentum-energy of charged particles relative 
to uncharged particles, we will refer to 0 as the field of the charged classical 
vacuum. 

Consider Minkowski spacetime with a charged vacuum field 0 satisfying 
the transport law (26). Let (y(s),  m, e) denote an arbitrary charged particle 
(Norris, 1985), where we do not assume that y(s) is a solution of equation 
(14). 

Definition. The momentum-energy per unit rest mass of a classical 
charged particle (7(s),  m, e) is the affine vector field/3 defined along 7(s) 
by 

/3 = 6 ( v ( s ) ) e  ~(s) (28) 

Using equations (9) and (26), one can express the affine covariant 
derivative of  13 along y(s) as 

A ^ ^ 

D~,/3 = D~,O+ d~,~, = - e F (  ~/)+ d~,~/ (29) 

If /3 is constant along y with respect to the affine connection, then 
A A 

D~p = 0, and equation (29) reduces to the Lorentz force law (14) for a 
particle with charge-to-mass ratio e. Such a curve may be considered as an 
affine geodesic of type e (Norris, 1985). The physical interpretation is that 
a Lorentz force law trajectory y(s) is one along which the momentum-energy 
/3, obtained by translating the charged vacuum by ~ as in (28), is constant 
(affine parallel) along the trajectory. A charged particle will seek out a 
world line along which the variation D~0 in the charged vacuum is just 
balanced by the linear change d ~  in the kinetic momentum-energy per 
unit rest mass. 

By equations (12) and (27), the R 4 curvature relative to the charged 
classical vacuum is 

^ 

A ~ = -Vt,F~lO~ |  ^ dx ~ (30) 
^ 

Let qb~ denote the components of ~  so that 

�9 ~ = -VE~,F~ 1 (31) 

The transport law (26) will be integrable when d9 = 0. In this case we 
can choose a zero at one spacetime event and then use the transport law 
(26) to define zero throughout a neighborhood, and the result will be 
path-independent. 

In this section we have assumed from the beginning that the tensor 
field F was an electromagnetic field tensor. However, we have not used the 
Maxwell equations anywhere in the discussion, and provided F~. = - F . ~ ,  
the general features of the discussion remain valid if F is an otherwise 
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arbitrary tensor field. The integrability condition qb ~ = 0 implies that q b -  = 0 
and ~E,,~Aj=0 when �9 vanishes. Using (31), it is not difficult to show that 

dp~ = 0 ~ V ~ F ~  = 0 (32) 

q~t,~l = 0 ~ V t ~ F ~ J  = 0 (33) 

The result is that if an R 4 connection F is antisymmetric and the R 4 

curvature is integrable, then F must satisfy the source-free Maxwell 
equations. Combining equations (32) and (33) with q ~  = 0, one finds that 
in fact F must be covariant constant: 

V.F.A = 0 (34) 

The equations ~ . ~ -  0 and ~t.~A3 = 0 were adopted as the R 4 electromag- 
netic field equations without the stronger condition (34), which only holds 

A when q b  =0.  

4. S U P E R H A M I L T O N I A N  DYNAMICS OF A CHARGED TEST 
PARTICLE.  TWO ALTERNATIVE D E S C R I P T I O N S  

Let us consider how the geometric structure of the electromagnetic 
field is related to the dynamical structure involved in the description of 
particle mechanics. We are going to use superhamiltonian dynamics to 
ensure that the picture is relativistic, but we will not make all the construc- 
tions generally relativistic. More specifically, we are going to use Minkowski 
metric 

~7~ = d i a g ( - 1 ,  1, 1, 1) (35) 

rather than a general metric g ~ .  
There are two ways to formulate the suerphamiltonian dynamics of  a 

charged particle placed in an electromagnetic field. Both of them are 
obtained by modifying the superhamiltonian dynamics of  a neutral 
(uncharged) particle. The case of  a neutral particle is trivial, but we include 
its description here to provide a basis for comparison and later discussion, 
where we demonstrate the difference between the standard and the P(4) 
theory approaches.  

The superhamiltonian dynamics of  a particle in the general case can 
be described as follows (Godbillon, 1969). Let T * M  be the cotangent bundle 
of spacetime M. Then the dynamics of  the particle is defined by two elements: 
a symplectic form S on T * M  (a closed 2-form of maximal rank) and 
superhamiltonian ~ on T * M  (a real-valued function on T ' M ) .  If  
X : T * M  -> T ( T * M )  is a vector field on T ' M ,  then it is called a superhamil- 
tonian dynamic system if and only if it satisfies the equation 

d Y ( :  - S  J X  (36) 
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A curve f :  (a, b)-~ T * M  [A ~--~f(A), where A ~ (a, b) and f(A) c T ' M ]  
is called an integral curve of the superhamiltonian system if 

d f (d /dA  )~ = f , ( d / d A ) x  = X(f (A )) (37) 

where X is a superhamiltonian dynamic system and (a, b) is an open interval 
of the real axis. Any integral curve of the superhamiltonian system satisfies 
the Hamilton equations, which can be written in general coordinate-free 
form as 

dY(= - S  J f , (  d /  dA ) (38) 

In local coordinates (x ",p~) of T * M  a general vector field can be 
written as 

0 0 
X = a  - - + b y - -  (39) 

ax ~ op~ 

and the superhamiltonian Y( can be considered as a function of x ", p . :  

Yt ~ = ~ ( x " ,  Pv) (40) 

Then 

dY( = OY( dx ~ + 0_.__~ dp~ (41) 
Ox ~ Op,~ 

The symplectic form S can be represented as 

S = Sikdy i ^ dy k, i, k = 1 , . . . ,  2n (42) 

where y l =  x l , . . . ,  yn = x  n, yn+l = P l , . . . ,  y2~ =P~, and Sik is an antisym- 
metric matrix of rank 2n. The matrix (Sik) can be represented in the general 
case as 

(Sik)=(C B )  (43) 

where B is an (n x n) matrix and C, D are (n x n) antisymmetric matrices. 
In all the situations considered below we use only the symplectic forms for 
which B = - / ,  where I is the (n x n) unit matrix, and D = 0. Thus, the most 
general form of the matrix S~k used below will be 

(Sik)=(Ci - - I )  (44) 

i.e., i f  C =- ( C . . ) ,  then the local expression for the symplectic form S will be 

S = dp. ^ dx ~ + C.~dx" ^ dx ~ (45) 
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A curve f in T * ( M )  can be locally expressed by 2n functions 

A ~-~x~(A); A ~-~p~(A) (46) 

The local expression of the tangent vector field of the curve is then 

0 0 
= 2 " - - +  fly-- (47) 

f* - ~  Ox" 1" Op~ 

where 2 ~ = dx~ / dA, p~ = dp. /  dA. 
Thus, the Hamiltonian equation (38) for the integral curves can be 

expressed locally as 

3N aN [ \ 0 o 
dx ~ +=---dp. = (dp~ ^ dx ~ + C . f l x  ~" ̂  dx ~) _J [ 2 - - - ~ + / i ~ - - /  (48) 

Ox ~ Op. \ Ox OpJ 

After using the relations dx"AO/Ox ~-6~,- " dp. 20/Op~ = 8.,  ~ and 
dx" AO/Op~ = dp. AO/Ox ~= 0, we find that equation (48) reduces to 

0N ~ aN d 
~x ~dx +Op~ . . . .  p~ 2~dP~-(P~ ' -C"~2 '~)dx"  (49) 

Equation (49) thus implies the Hamiltonian equations 

2 ~ = oN/op~ (50) 

p~ = - a ~ / o x "  + c ~ "  (51) 

The superhamiltonian dynamics of a free (neutral) particle corresponds 
to the choice of the symplectic form being the canonical symplectic form 
of the cotangent bundle T ' M ,  

Sr = dp. ^ dx" (52) 

i.e., making C,~ = O, and the choice ofsuperhamiltonian (Misner et aI., 1973) 

1 2 
~=~--~mEm +p p~] 

The Hamilton equations (50), (51) now reduce to 

2" = p " / m  

p,~ = 0 

and the equation of motion takes the form 

( m ~ ) = 0  

Equation (56) could be put in the simpler form 

2" =p~ 

(53) 

(54) 

(55) 

(56) 

(57) 
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if we replace the parameter A by mA. At present we want only to stress that 
the momentum-energy of the particle in this case is a linear vector. No 
affine structure shows up. 

The superhamiltonian dynamics of a charged particle in an electromag- 
netic field can be obtained by modifying the free-particle dynamics in two 
possible ways. The first possibility is to keep Y( unchanged and to replace 
the canonical symplectic form (52) with the noncanonical symplectic form 
(GuiUemin and Sternberg, 1984) 

S = Sc + qF (58) 

where q is the charge of the particle and F is the electromagnetic 2-form. 
Locally (58) can be expressed as 

S = dp.  ^ dx ~ + qF.~ dx ~ ^ dx ~ (59) 

It is easy to see that the symplectic form (59) together with the super- 
hamiltonian of the free particle (53) produces the dynamics of a charged 
particle placed in an electromagnetic field F. In fact, the Hamilton equations 
(50) and (51) now take the form (C.~ = qF.~) 

2" = p " / m  (60) 

p~ = eF~,~.i ~ (61) 

This gives the standard Lorentz force law equation of motion 

(m2~) "= eF;Yc ~ (62) 

The relation between the momentum-energy of the particle and the velocity 
of the particle remains the same as in the case of the free particle. However, 
the symplectic form (58), (59) is no longer canonical. 

It is possible to return to the canonical symplectic form just be changing 
coordinates on the cotangent bundle. In the case of the single-particle 
dynamics the coordinate transformations are restricted to 

X ' = X " ( x ~ ) ,  P~=P~(x~ ,po)  (63) 

if we want to interpret observations in spacetime. Simple but lengthy analysis 
shows that in this case we can restrict ourselves to the transformations 
(Boisseau and Barrab~s, 1979) 

X ~ = x " ,  P~ = p ~ + f ~ ( x  ~) (64) 

without sacrificing generality. 
The last equation implies 

p~ = P~ - f~(x  ~) (65) 

dp~ = d P~ - d f  v (66) 



Formulations of Charged Particle Dynamics 

Substitution of equation (66) into equation (59) then gives 

S =  (dP~ - d f ~ )  ^ dx~ + qFu~ dx  ~* ̂  dx  ~ 

= dP~ ^ dx~+(qF~,~ dx ~" - d f ~ )  ^ dx  ~ 

= dP~ ^ dx  ~ + qF~,~ dx ~ ^ dx" -f~,~, dx  ~ ^ dx  ~ 

It is obvious that the choice 

reduces equation (67) to 
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(67) 

f~ = eA~ (68) 

S = dP~ ^ dx ~ (69) 

Thus, the symplectic form becomes canonical in variables (x ~, P.), where 

P~ = p~ + q A .  (x  ~) (70) 

Taking into account that f~(x "), A ~ ( x  ~) are functions of the coordinates 
(X ~) only, one can interpret equations (65) and (70) as translations of 
momentum-energy spaces over the spacetime points (x~). Then f ~ ( x  ~) in 
(65) and q A ~ ( x  ~) in (70), when considered as functions on spacetime, define 
fields of translations of infinitesimal momentum-energy spaces. Hence, the 
field of translations qA~ (x  ~) reduces the symplectic form (59) to the canoni- 
cal form (69). 

The superhamiltonian in new variables (x ~, P~) can be obtained from 
(53) by using the following expression for p~ obtained from (70): 

p ~ =  P ~ - q A v  (71) 

(72) 

The result is (Misner et al., 1973) 

! 
Yg(x ", P~) = ~ [ r n 2  + ( P "  - qA~)(P~, - q A . ) ]  

2 m  

The canonical symplectic form (69) and the superhamiltonian in new 
variables (72) provide the second alternative way to determine the super- 
hamiltonian dynamics of a charged particle in an electromagnetic field. 

It is easy to see that 

OY( P~ - qA  ~ 
- q a ~ , ~  ( 7 3 )  

ax ~ m 

O Y( P~ - qA ~ 
- - -  ( 7 4 )  

0P~ m 
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Taking into account that in the new variables the symplectic form is canoni- 
cal [i.e., C . ~ = 0  in the Hamilton equations (50) and (51)] and using 
expressions (73) and (74), we arrive at the Hamilton equations 

p~" _ q A  ~ 
x~" - ( 7 5 )  

m 

p ~ + q A  ~ 
P~, = qA~,,~ (76) 

m 

Equations (75) and (76) give 

( mYc,, + qA,,  )" = qA,~,Sc '~ (77) 

o r  

Since 

( m 2 . ) ' =  q(A,~,~ - A. . . ) . ;c  ~' (7s) 

F~  = A~,~ - A~,. (79) 

we obtain the Lorentz force equation 

(m2~)" = q F ~ 2  c~ (80) 

Recall now that q A " ( x  ~) can be interpreted as the field of translations 
of infinitesimal momentum-energy spaces. This circumstance suggests the 
idea that the spacetime model of canonical momentum-energy Pc has 
natural expression in terms of affine structure rather than linear. The 
geometric implications of this idea will be considered in the next sections, 
For future purposes it is convenient to rewrite equation (76) or (77) (the 
first is a truly Hamiltonian equation, while the second is a Lagrangian 
equation )in 'semihamiltonian" form 

~'~ = qA~,~2  ~ (81) 

5. DYNAMICS OF CHARGED PARTICLES AND 
A F F I N E  GEOMETRY 

To compare the results of both formalisms, we will rewrite the "semi- 
hamiltonian" equation (81) in terms of the notation used in Section 3. Thus, 
we introduce the notation 

rr~, = P , . /  m (82) 

e = q / m  (83) 

Using these variables, we reduce (81) to the "semihamiltonian" equation 

~r. = eA~,~2  ~ (84) 
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Rewriting equation (84) in contravariant form, we obtain 

4r ~ = e A ~ 2  ~ = e r l~A ,~ ,~2  ~ (85) 

As in Section 3, we relate 3~ with x ~ by means of 

~/= 2~ a / o x  '~ (86) 

Here p is a linear vector at each point of the particle world line (4-velocity 
vector). We further introduce the notation 

d . ~ - =  ~ = ~..__0___0 (87)  
0x ~ 

= AS, _7-;@ dx (88) 
Ox ~ 

/~ = A "--~-0 (89)  
Ox ~ 

Notice here the difference between d-A and d/~. The former is defined by 
equation (88), while the latter means 

dfi~= A . ~ x ~  |  (90)  

It is clear, then, that 

-~-~U '1;' = , , ,  .~ 0 A , ~ x  (91) 
Ox" 

d ~ j , ~ = A ~ 2 ~  O 
"'~ Ox ~ (92) 

We also stress here that the notation F in Section 3 was used for the 
vector-valued 1-form with components 

~ (93) F~ = ~7~r = ~ ( A ~ , ~ - A t 3 , ~ ) = A t ~ - A  ~ 

i.e., 

It follows from equations (86), (93), and (94) that 

(94) 

0 
j6 j  3) = (A~[~ - _A~ 2 ~ ) 0 ~ =  ~ j  3; - dfi.J (95) 
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Using equations (87) and (91), we can rewrite equation (85) in the compact 
vector form 

d~,~r = e - fA  A ~ (96) 

All of the vectors in this equation are linear vectors. In the same vector 
notations, equation (75) can be rewritten as follows: 

~, = 7? - e.4 (97) 

We propose now to interpret the spacetime geometric model of phase 
space momentum-energy as the affine momentum-energy of a classical 
charged particle [cf. equation (28) of Section 3], i.e., 

~- = 6(~,) (98) 

More precisely, 

= 6(~-, O) (99) 

Comparison of equations (99)  and (97) then yields 

6(~', 6) = 77 - eA (100) 

which implies 

d~6(  ~r, 6) = dv(  ~r - e A )  (101) 

Also, from equations (13) and (25) it follows that 
d ~ ( ~ , 6 )  ~ A A ^ A A 

= D ~ r  - D~,O = D ~ r  + e F A  p (102) 

Using the "semihamiltonian" equation (96) and relation (95), we can also 
write 

d~,( ~r - e A )  = e-ffA A "~ - ed.A A "~ = e F  A ^? (103) 

Substituting equations (102) and (103) in equation (101), we obtain 
A 

D.~cr = 0 (104) 

Thus, the affine canonical momentum-energy of the classical charged par- 
ticle is affine covariantly constant along the particle world line. 

6. AFFINE R E I N T E R P R E T A T I O N  OF S U P E R H A M I L T O N I A N  
DYNAMICS 

In Sections 4 and 5 we showed that an affine structure is implicitly 
present in the superhamiltonian dynamics of classical charged particles in 
electromagnetic fields. We considered two equivalent superhamiltonian 
systems in Section 4. In system (I) the superhamiltonian (53) is "canonical," 
while the symplectic form (59) in noncanonical, and in system (II) the 
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superhamiltonian is in the noncanonical form (72), while the symplectic 
"form (52) is canonical. The equivalent of the two systems was shown to 

follow from the special coordinate transformation (70) on T ' M ,  which may 
be viewed as a translation in the local momentum-energy spaces. 

We now want to investigate a third case that is trivial and at the same 
time informative. We need to reconsider the uncharged free-particle system 
where both the superhamiltonian and symplectic form are canonical, and 
then transform the system to noncanonical coordinates using the translation 
(70). This case is trivial in that the translations cannot change the integral 
curves of the system since d H  = - S A X  is an invariant equation. On the 
other hand, we can gain insight into the affine structure from the form of 
the translated Hamilton equations. 

Denote by (1II) the free-particle system with canonical superhamil- 
tonian (53) and canonical symplectic form (52), and by (IV) the system 
obtained from (III) by applying translation (70). The essential results of 
the superhamiltonian formulations for these two systems are listed in the 
columns labeled (III) and (IV) in Table I. The last row shows the invariance 
of the spacetime equations of motion under the translations (70). 

The entries in the third column reveal an important aspect of the affine 
structure. In particular, note that in the uncharged system (IV) the dynamical 

Table I. Comparison of the Description of Free Uncharged Particles under Translation (Redefinition) of 
Reference Momentum-energy, in Superhamiltonian and Affine Formulations 

Superhamiltonian Afl ine  

Description III IV III IV 

Canonical 
momentum-energy Coordinate 7r~, in phase space Affine vector in ( J 'pM,  TpM,  So) 

Reference 
momentum-energy 0 - q A  3 ,4 = 3 G  - e f t .  

Superhamiltonian "rrZ/ 2 m  ( .n" - qA  )Z / 2 m  - -  - -  

Difference function - -  - -  So So 

Symplectic 2-form dr,'t~ ^ dx  "~ dTr~ ^ dx  ~ - -  - -  
+qF,,~dx~" A dx  ~ 

R 4 c o n n e c t i o n  - -  - -  ~K~,,~ = 0 A K ~  = e V a A  ~ 

Hamilton's 
first equation ( d ~ + S _ l X ) ( a / O T r . )  = 0  Spacetime curve 7 ( s )  

defines 7r in terms 
4-velocity ~, 7r = m-~ r c = m ~ + q A  ~" = ~.~) ~, ~ = A e ( ~ , +  eA)  

Hamilton's second (dYg + S .A X ) (O/Ox ~" ) = 0 L)f r = 0 
dynamical equation 
of motion 6 " = 0  6 " - q d A / d s = O  d.~w = 0 d A z r - e d A / d s = O  

Spacetime equation 
of motion d ~ ,  = 0 d4,~, = 0 
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force that generates nontrivial ~ .  is the term q dA . /ds .  This is in fact the 
term that gets transferred from the right to the left side of the dynamical 
equation in passing from (I) to (II). Systems (III) and (IV) reveal that this 
term is the result of simply redefining the reference of momentum-energy 
using the vector potential A. ,  and in the affine formulation may thus be 
considered geometrically as arising from an integrable R 4 connection. 

To see this more precisely, consider a global inertial frame in Minkowski 
spacetime with electromagnetic field F = dA. We may take this global frame, 
and all frames obtained from O(1, 3) rotations, as defining instantaneous 
comoving observers for all uncharged test particles at all points of spacetime, 
and take the zero vector field 0 as the reference of zero momentum-energy 
for uncharged test particles. The observer may choose to redefine the 
reference of momentum-energy using the vector potential by 

6 ~ 0 - qA (105) 

Since uncharged particles do not couple directly to the electromagnetic 
field, the momentum-energy of an uncharged particle is represented by a 
tangent vector in the affine theory. However, we may give each local tangent 
space its natural affine structure, denote the zero vector by z ~, and assign an 
i n t e g r a b l e  R 4 connection by ~K~ =0.  Under the translation ~ 2 |  
this R 4 connection transforms to [cf. equation (10)] 

^ 
~ jx K~ ~ A K ~  = -qA,;~ (106) 

The last column in Table I shows that this term is responsible for the d A " / d s  
term in the dynamical Hamiltonian equation. This proves our claim made 
above that this term corresponds to an integrable R 4 connection. 

It is now clear that in transforming from 0 to A in systems (I) and (II) 
we are also transforming away an integrable piece of the R 4 connection. 
The components of the R 4 connection relative to 0 are 

= K~ = - q V * A .  + q V . A  h (107) 

The second piece on the right-hand side can be transformed away by the 
translation (70), so that in general the state .g. = 0 |  with 

^ AA A A D~A = K . = - q V X A ~  (108) 

no longer has additive integrable terms. However, when the electromagnetic 
field is covariant constant, AK in (108) can be further transformed to zero 
by a translation, since'this situation corresponds to the R 4 integrable fields 
mentioned earlier. It is not difficult to show, using (108) and (10), that this 
is the case. 
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We have the result that relative to the state e{ = 6(~ -qe{ the R 4 c o n n e c -  

t i o n  generically has no additive integrable terms. It thus represents a state 
of  min imal  R4-anholonomity. Since the state/~ corresponds to the condition 
that the symplectic form is canonical, this suggests that a reference affine 
momentum-energy field be considered holonomic when the corresponding 
phase space coordinates are canonical. 

Taking a clue from this correspondence, let us reconsider system (I). 
The superhamiltonian is especially simple, but the symplectic form is non- 
canonical. Note, however, that the symplectic form (59) can be rewritten 
in the form 

S = d%,  A dx ~ + q F ~  dx ~ ̂  dx  ~" 

= (d~'~ - q F ~  dx ~) A dx ~" (109) 

= @Tr~ ^ dx  ~ 

where we have formally defined ~Tr~, to be 

@Tr~ := dvr~ - q F ~  dx ~ (110) 

This expression may be considered as providing a vector bundle definition 
(Hermann, 1975) of a generalized affine connection with flat linear curvature. 
Since T * M  may be considered as an associated bundle of the affine frame 
bundle A ( M ) ,  a vector bundle affine connection on T * M  is equivalent to 
a generalized affine connection on A ( M )  (Norris, 1988). 

In the notation (110) the superhamiltonian system can be expressed as 

H = 7r~Tr~/2m, S = ~1r~ ^ dx  ~ (111) 

The symplectic form is covariant  canonical. 
Now suppose that s ~  r ( s ) =  ( x ~ ( x ) ,  ~r~(s)) is a curve in phase space 

with tangent vector § = ~ a / o x  ~ + fry O/O~r,. Evaluating the one-forms 
~ r ~  at the tangent vector § we find 

~7r~ ( 4 ) = (r, - q F ,  j c  ~ (112) 

This will vanish if r (s)  is an integral curve of the superhamiltonian dynami- 
cal system. We are led once again to the affine geodesic equation. 

The R 4 affine reinterpretation is summarized in Table II. We put into 
correspondence with Hamilton's first equation (the definition of canonical 
momentum-energy in terms of linear 4-velocity) the assumption that the 
momentum-energy of a classical charged particle is represented as an affine 
vector ~" that defines the linear 4-velocity when measured relative to the 
charged vacuum 6 using the difference function 3: 

~'~ = aH/acr,~ o ~,~ = cS (~-, 6) (114) 
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Table II. Comparison of the Superhamiltonian and Affine Descriptions of Charged Particle Dynamics 

Superhamiltonian Afline 

Description I II I II  

Canonical 
momentum-energy Coordinate 7r~ in phase space 

Reference 
momentum-energy 0 - q , 4  

Superhamiltonian ~2 / 2 m ( ~" - qA ) 2 / 2 m 
Difference function - -  - -  
Symplectic 2-form d ~  ^ dx ~ dTr~ ,', dx v 

+ q F ~  dx ~" 
^ dx ~ 

R 4 c o n n e c t i o n  - -  - -  6 K ~  = - e F ~  A K ~  = - e V ~ A ~  

Hamilton's 
first equation (dY{+ S J  X ) ( O / O ~ )  = 0 Spacetime curve y ( s )  
defines ~r in terms 
of 4-velocity ~) ~ v = m q  w = m ~ + q A  ~" = 0 ~  ~) ~" = ,3,G ( y  + cA)  

H a m i l t o n ' s  second ( d ~  + S A X )  (O/0x ~ ) = 0 /)~,-k = 0 
dynamical equation 
of motion ~ = q F 3 ~  i r = q ~ 3 ~ ,  d 6 ~ +  d~Tr+,4 ,4KJT~O" 

K J ~ , = O  

Afline vector in (~pM, TpM, 3) 

6 6 

Spacetime equation 
of motion ~ = eF~:~ a 5~ ~ = e f t 2  ~ 

Table II illustrates how these expressions transform under m o m e n t u m -  
energy translations. 

Finally we replace the dynamical Hamilton equation with the affine 
geodesic equation: 

OH �9 v<_._> "~ d x " + C . ~ x  D~-= 0 (114) "h'~, O x ~ 

7. C O N C L U S I O N S  

In this paper we have sought to understand the relationship of  the 
R 4 c P(4) affine and the superhamiltonian descriptions of  the dynamics of  
classical charged particles in electromagnetic fields. Although the two for- 
mulations appear to have distinct underlying geometric structures, we have 
found a correspondence between them so that one may be reinterpreted in 
terms of  the other. 

In the R 4 theory the basic structure consists o f  a n  R 4 affine connect ion 
on the affine frame bundle A(M) of  spacetime together with a geometric 
difference function on the local momentum-energy  affine spaces. On the 
other hand, the structure in superhamiltonian dynamics is a symplectic 
2-form and a superhamiltonian (function) on the phase space manifold 
T*M. However,  if T*M is viewed as a vector bundle over M, then we have 
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shown that, by using equation (110), we may extract from the symplectic 
form a definition of a vector bundle affine connection. Since T * M  may be 
considered as an associated bundle of A ( M ) ,  (110) also leads to a unique 
R 4 affine connection with flat linear curvature on A ( M ) .  The first part of  
the correspondence is thus 

symplectic 2-form S o  R 4 affine connection /(  

From a study of the structure of  the Hamilton equations under momen- 
tum-energy translations in phase space we have found that the superhamil- 
tonian plays the same role as does the geometric difference function, namely 
to define the momentum-energy  of a particle in terms of its 4-velocity. Thus, 

superhamiltonian Ygo affine difference function 3 

To set up this last correspondence, we found it necessary to make a 
"gauge correspondence" assumption based on a comparison of the proper- 
ties of  both theories under translations of  momentum-energy.  The transla- 
tion from noncanonical  to canonical coordinates that reduces the symplectic 
form S = dlr~ A dx" + qF~, dx ~" A dx v to canonical form also reduces the R 4 

connection to a minimal R4-anholonomic form. In view of the compatibility 
condition (13), it is natural to consider the holonomic form AK~ = -qV~A~ 
of  the R 4 connection as providing the dynamics of  the difference function 
& This led us to consider the field 0 defined by instantaneously comoving 
uncharged inertial observers as R4-anholonomic,  and the translated field 

= 0 0  - q A  as R4-holonomic. Thus, the gauge correspondence assumption 
is 

canonical coordinates~--~ R 4 holonomic origin field 

Since the reference field 0 has its basis in the operational definition of 
the Lorentz force law in instantaneously comoving inertial frames, this 
assumption gives a degree of physical significance to noncanonical coordin- 
ates, considering them as R4-anholonomic reference energy-momentum 
gauges. The remaining features of  the correspondence are shown in 
Table II. 

A remark is in order concerning the affine connection assumed in the 
P(4) theory. To avoid the historical confusion over the term affine connection, 
a connection on the affine frame bundle A ( M )  of a manifold is referred to 
as a generalized affine connection (Kobayashi  and Nomizu, 1963). When 
the translational part of  a generalized affine connection corresponds to the 
soldering 1-form on the linear frame bundle L(M) ,  the connection is referred 
to as an affine connection. In this case the R 4 curvature is the ordinary 
torsion of the associated linear connection, and this is the arena for the 

�9 metric-affine theories (Hehl et al., 1976). It has been shown (Norris et al., 
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1980) that the translational part of a generalized affine connection & can 
be decomposed on L ( M )  with respect to the soldering 1-form 0 as 

O = pO + ,c 

Here p is a function and ~- corresponds to a trace-free type (1,1) tensor 
field. The choices p = 1 and r = 0 reduce the generalized affine connection 
to an affine connection, and thus the ~- component  plays no role in the 
metric-affine theories. In the P(4) theory p = 0 and the R 4 connection resides 
in the complementary ~- component.  Moreover, the linear connection in the 
P(4) theory is a torsion-free Riemannian metric connection. What we have 
referred to as the R 4 curvature might more properly be called generalized 
torsion, but we shall not do so. The P(4) theory is therefore distinct from 
the metric-affine theories. 
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